1. Atomic Structure

- **N**: Symbol of the element
 - **S**: Symbol of the element
 - **N**: Nucleon Number is the number of nucleons (protons plus neutrons).
 - **P**: Proton Number is the number of protons

- An atom has the same number of protons as electrons (otherwise it would be an ion)

- If an atom has 3 protons how many electrons are there? (3)

2. Isotopes

- An isotope of an element has a different number of neutrons.
 - As it is the same element the proton number is the same
 - e.g. Carbon 14 has 6 protons (because its carbon) and so it must have 8 neutrons and Carbon 12 has 6 protons and so it must have 6 neutrons.

3. Alpha

- Alpha particles are made of 2 protons and 2 neutrons that are given out during radioactive decay. (Helium nucleus).
- This causes the parent atom to go through radioactive decay, giving out radioactive substances. One of which are alpha particles.
 - i.e. $^{237}_{92}$Np $\rightarrow ^{233}_{90}$Pa $+ ^{4}_{2}$α
 - Least penetrating: can be stopped by 3cm of air or paper
 - Most ionizing (due to the presence of protons)
 - Can damage the inside of the body once consumed.

- What is an alpha particle? *(a positively charged helium ion or nucleus)*
- How do you write an alpha particle in an equation $(^{2}_{2}$α)*

4. Beta

- Beta particles are composed of electrons that are given out by radioactive decay.
 - A neutron in the parent atom decays to become a proton and an electron.
 - The electron cannot remain in the nucleus and is expelled.
 - This causes the parent atom to change element (atomic number goes up 1) although the nucleon number stays the same
 - $^{233}_{92}$Pa $\rightarrow ^{233}_{91}$U $+ ^{0}_{-1}$β
 - penetration: stopped by 8m of air or thin Aluminium
 - Ionizing (due to -1 charge)

- What is a beta particle? *(high energy electron)*
- How do you write a beta particle in an equation? $(^{0}_{-1}$β)*
- What changes inside the atom when a beta particle is released? *(a neutron becomes a proton + an electron)*

5. Gamma

- Type of radioactive decay emitted from radioactive nuclei.
- In the form of an electromagnetic wave with short wave length and high frequency (no mass, no charge).
 - No effect on mass number or atomic number, but makes the nucleus more stable.
 - Most penetrating ability as the rays are not easily absorbed due to its speed (light speed) and is very unlikely to collide with another atom.
 - The radiation is reduced by a few cm of lead or 30ft of concrete.

- What is the charge on a gamma ray? *(0)*
- Does a gamma ray have more mass than an alpha particle? *(no)*

6. Detecting Radiation

- Radioactivity is invisible, has no smell, makes no sound - in fact it cannot be detected by any of our senses.
 - A Geiger counter is used to detect and measure radiation.
 - Photographic paper can also be used as it turns darker (fogs) in the presence of radiation.

- What does radioactivity do to photographic film? *(fog it)*
- What does a Geiger-Muller tube detect? *(radiation)*
7. Background Radiation
- Background radiation is the radiation being constantly emitted from the surroundings.
- It will vary depending on your environment.
- In radioactivity experiments the experiment is shielded the background count is subtracted from the results.
- Examples: soil, radioactive waste, cosmic rays from space, rocks, air, medical X-Rays.
- Radon gas is a large source of background radiation (e.g. in Cornwall).

Why are houses well ventilated in Cornwall? (to disperse the radon gas)

When performing a radioactivity experiment what must you do to your measurements? (subtract the background radiation)

8. Activity
- Activity is the number of radioactive counts per second.
- Units: Becquerels (Bq) = Counts per second

9. Half Life
- Half life is the amount of time a radioactive material takes to lose half its radioactivity.
- It can be measured using the activity (Becquerel) or percentage of atoms remaining.
- For example, if caesium-137 has a half life of 30 years, this means that in 30 years its radioactivity has dropped by half in 30 years, a quarter by 60 years, an eighth in 90 years etc.

100g of a radioactive substance has a half-life of 2 hours. How much of the substance will remain after 6 hours have passed? (12.5g)

10. Uses of Radioactivity
- Some devices use radioactivity to function
 - A smoke detector uses alpha radiation.
 - Beta radiation is used in a paper thickness machine.
 - Gamma rays can kill bacteria, so they are used to sterilize medical equipment and food.
- Tracers
 - Radioactivity can also be used to identify leaks in underground water pipes.
 - Beta sources with short half lives are used to examine the inside of human bodies.

Name and describe a device that uses radioactivity? (above)

11. Dangers of Radioactivity
- Affects in different ways depending on dosage.
- Large doses - skin burns, radiation sickness
- Very large doses - can cause changes in DNA it may kill the cell or affect the way it multiplies - mutations and cancer
- Genetic mutations - if reproductive cells are damaged, there can be mutations in children

How does radiation cause cancer? (damages the DNA of cells)

Which type of radiation is worse if it is inside our body? (Alpha)

12. Rutherford’s Experiment (H)
- Alpha particles were fired at a gold foil in a vacuum.
- Most went straight through or were deflected through small angles.
- Thus, an atom was mostly empty space.
- Some were deflected through large angles or were reflected back.
- He concluded that there was a small nucleus with all the mass
- As alpha particles are positive, he concluded that the nucleus is also positively charged.

Why did he conclude that the atom was mostly space (because most alpha particles went straight through)
13. Fission of U235 (H)
- The nucleus of U-235 can be split by collision with a neutron (Nuclear fission)
- Stages of a chain reaction:
 - A nucleus absorbs a neutron
 - The nucleus splits into 2 daughter nuclei releasing neutrons
 - The nuclei split, all releasing neutrons
 - More neutrons are released than are absorbed
- You are not expected to learn the equation but you are expected to complete one:
 - $^{235}_{92}U + ^1_{0}n \rightarrow ^{236}_{92}U$
 - $^{236}_{92}U \rightarrow ^{141}_{56}Ba + ^{96}_{36}Kr + ^1_{0}n + ^1_{0}n + ^1_{0}n$

- What are the stages of a chain reaction?
- What is the definition of nuclear fission?

14. Nuclear Power (H)
- Nuclear power is formed through fission (Splitting of a nucleus) and fusion (Joining of two nuclei).
- A chain reaction is uncontrolled so:
 - Control rods are used to absorb some of the neutrons so the rate of fission can be constantly altered to provide constant heat to generate electricity.
 - Moderator slows down the neutrons to increase the chance of a neutron being absorbed by a nucleus each collision.

- What is the use of a moderator?
- What do control rods do?

1. Graph Drawing
- Use the SLAP method
 - Scale: multiples of 1, 2 or 5
 - Line of best fit: unless it is a motion/time graph
 - Axis: units and labels
 - Points: x not blobs
- Note:
 - more than half the graph paper should be used
 - Lines of best fit can be curved or straight
 - No line should be thicker than 1mm

- When should you use a bar graph in physics? *(never unless specifically told to)*
- When should you not use a line of best fit? *(on a velocity time or distance time graph)*

2. Graph Questions
- If it says use the graph you either have to:
 - work out the area under it
 (v/t graph it is the d, l/t graph it is Q ...)
 - work out the gradient
 (x/t graph it is v, v/t graph it is a ...)
- If it says calculate it normally involves taking readings and using a formula
- Show what you are doing on the graph, draw lines, write the numbers in the squares ...

3. Multipliers
- Always convert to base units
- Except for kg
 - $m = milli = /1000$ (e.g. mW)
 - $k = kilo = x 1000$ (e.g. kBq)
 - $M = mega = x1000000$ (e.g. MHz)
- minutes to seconds ($x60$)
- hours to seconds ($x3600$)

- Convert 0.5 hours ($1800s$)
- Convert 11.5 mW (0.0115W)
- Convert 13.2 kg (13.2 kg)
- Convert 0.87 MPa (870000 Pa)

4. Calculations
Follow the 5 Step Method:
1. Write down the variables in the question
2. Write down the equation
3. Substitute into the equation
4. Show your working
5. Add the unit